Simplicial complexes of triangular Ferrers boards

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rook Poset Equivalence of Ferrers Boards

A natural construction due to K. Ding yields Schubert varieties from Ferrers boards. The poset structure of the Schubert cells in these varieties is equal to the poset of maximal rook placements on the Ferrers board under the Bruhat order. We determine when two Ferrers boards have isomorphic rook posets. Equivalently, we give an exact categorization of when two Ding Schubert varieties have iden...

متن کامل

Rooks on Ferrers Boards and Matrix Integrals

Let C(n; N) = R H N tr Z 2n (dZ) denote a matrix integral by a U(N)-invariant gaussian measure on the space H N of hermitian N N matrices. The integral is known to be always a positive integer. We derive a simple combinatorial interpretation of this integral in terms of rook conngurations on Ferrers boards. The formula C(n; N) = (2n ? 1)!! n X k=0 N k + 1 n k 2 k found by J. Harer and D. Zagier...

متن کامل

The Inverse Rook Problem on Ferrers Boards

Rook polynomials have been studied extensively since 1946, principally as a method for enumerating restricted permutations. However, they have also been shown to have many fruitful connections with other areas of mathematics, including graph theory, hypergeometric series, and algebraic geometry. It is known that the rook polynomial of any board can be computed recursively. [19, 18] The naturall...

متن کامل

Boolean complexes for Ferrers graphs

In this paper we provide an explicit formula for calculating the boolean number of a Ferrers graph. By previous work of the last two authors, this determines the homotopy type of the boolean complex of the graph. Specializing to staircase shapes, we show that the boolean numbers of the associated Ferrers graphs are the Genocchi numbers of the second kind, and obtain a relation between the Legen...

متن کامل

Bruhat intervals as rooks on skew Ferrers boards

We characterise the permutations π such that the elements in the closed lower Bruhat interval [id, π] of the symmetric group correspond to nontaking rook configurations on a skew Ferrers board. It turns out that these are exactly the permutations π such that [id, π] corresponds to a flag manifold defined by inclusions, studied by Gasharov and Reiner. Our characterisation connects the Poincaré p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2012

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-012-0385-x